

HD2156.1 - HD2156.2

HD2156.1, HD2156.2 pH METER - CONDUCTIVITY METER - THERMOMETER

HD2156.1 and HD2156.2 are portable instruments with LCD display. They measure pH, mV, redox potential (ORP), conductivity, liquid resistivity, total dissolved solids (TDS) and salinity using combined 4-ring and 2-ring conductivity/temperature probes. Temperature only is measured by Pt100 or Pt1000 immersion, penetration, contact or air probes.

The pH electrode calibration, as well as manual, can be carried out on one, two or three points and the calibration sequence can be chosen from a list of 13 buffers.

The calibration of the conductivity probe can be performed automatically in one or more of the 147 μ S/cm, 1413 μ S/cm, 12880 μ S/cm or 111800 μ S/cm solutions.

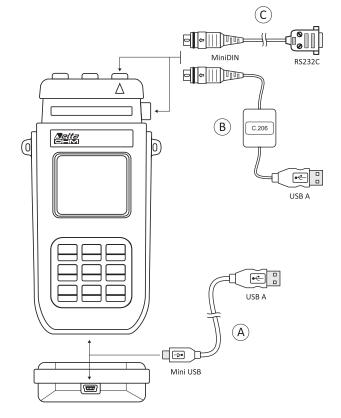
The HD2156.2 instrument is a **datalogger**. It stores up to 20,000 sets of three measurements composed of pH or mV, conductivity or resistivity or TDS or salinity and temperature: these data can be transferred to a PC from the instrument connected via the RS232C or USB 2.0 serial ports. The storing interval, printing, and baud rate can be configured by the menu.

Both models are fitted with an RS232C serial port and can transfer the acquired measurements to a PC or to a portable printer in real time.

The Max, Min and Avg function calculates the maximum, minimum or average values.

Other functions include: the relative measurement REL, the Auto-HOLD function, and the automatic turning off which can also be excluded.

The instruments have IP66 protection degree.


Measured quantities pH, mV, X, Ω, TDS, NaCl, °C, °F pH measurement by the instrument Measuring range -2.00+19.99 pH Resolution 0.01 pH ±1digit Accuracy ±0.01 pH ±1digit Input impedance >10 ¹² Ω Calibration error @25°C Slope < 50 mV/pH or Slope > 63 m Sensitivity < 85% or Sensitivity > 1 Temperature compensation automatic/manual -50+150 °C mV measurement by the instrument Measuring range Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the gradient of the reading (the gradient of the sensitivity) and the sensitivity of the reading (the gradient of the sensitivity) and the sensitivity of the reading (the gradient of the sensitivity) and the sensitivity of the sensitivity of the sensitivity of the reading (the gradient of the sensitivity) of the sensitivity of the sensitivity of the reading (the gradient of the sensitivity) of the reading (the gradient of the sensitivity) of the sensitivity of the reading (the gradient of the sensitivity) of the sensitivity of the reading (the gradient of the sensitivity) of the sensitivity of the reading (the gradient of the sensitivity) of the sensitivity of the sen	greater) tion 6/cm /cm				
Measuring range -2.00+19.99 pH Resolution 0.01 pH Accuracy ±0.01 pH ±1digit Input impedance >10½Ω Calibration error @25°C Slope < 50 mV/pH or Slope > 63 m Sensitivity < 85% or Sensitivity > 1 Temperature compensation automatic/manual -50+150 °C mV measurement by the instrument -1999.9+1999.9 mV Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the Graduation of the reading (the Gradu	greater) tion s/cm /cm				
Resolution 0.01 pH ±1digit Accuracy ±0.01 pH ±1digit Input impedance >10 ¹² Ω Calibration error @25°C Slope < 50 mV/pH or Slope > 63 m Sensitivity < 85% or Sensitivity > 1 Temperature compensation automatic/manual -50+150 °C mV measurement by the instrument .1999.9+1999.9 mV Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the grading that grading the grading that grading that grading the grading that gr	greater) tion s/cm /cm				
Accuracy	greater) tion s/cm /cm				
Input impedance >1012Ω Calibration error @25°C Slope < 50 mW/pH or Slope > 63 m Sensitivity < 85% or Sensitivity > 1 Temperature compensation automatic/manual -50+150 °C mV measurement by the instrument	greater) tion s/cm /cm				
Input impedance >1012Ω Calibration error @25°C Slope < 50 mW/pH or Slope > 63 m Sensitivity < 85% or Sensitivity > 1 Temperature compensation automatic/manual -50+150 °C mV measurement by the instrument	greater) tion s/cm /cm				
Offset > 20mV	greater) tion s/cm /cm				
Temperature compensation automatic/manual mV measurement by the instrument Measuring range -1999.9+1999.9 mV Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the grading transpector) Measurement of conductivity Measuring range Kcell=0.01 Measuring range Kcell=0.01 Measuring range Kcell=0.1 Measuring range Kcell=0.1 Measuring range Kcell=1 0.01999 μS/cm 0.01 μS/cm 2001999 μS/cm 0.1 μS/cm 2001999 mS/cm 0.1 mS/cm Accuracy (conductivity) Measuring range Kcell=10 2001999 mS/cm 1 μS/cm 2001999 mS/cm 1 μS/cm 2001999 mS/cm 1 μS/cm 2001999 mS/cm 1 mS/cm Accuracy (conductivity) Measuring range Kcell=10 Measuring range Kcell=0.01 Till 100MΩ·cm (*) Measuring range Kcell=0.1 Measuring range Kcell=0.1 Measuring range Kcell=0.1 Till 100MΩ·cm (*) Measuring range Kcell=1 5.0199.9 Ω·cm 0.1 Ω·cm	greater) tion 5/cm /cm /cm				
mV measurement by the instrument Measuring range -1999.9+1999.9 mV Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the of ±1 digit) Drift after 1 year 0.5 mV/year Measurement of conductivity Resolution Measuring range Kcell=0.01 0.00001.999 μS/cm 0.001 μS/cm Measuring range Kcell=0.1 0.0019.99 μS/cm 0.1 μS/cm 20019.99 μS/cm 0.01 μS/cm 0.01 mS/cm 20019.99 mS/cm 0.01 mS/cm 0.01 mS/cm Measuring range Kcell=10 2001999 mS/cm 1 mS/cm Accuracy (conductivity) ±0.5%±1digit Measuring range Kcell=0.01 Measuring range Kcell=0.01 till 100MΩ·cm (*) till 100MΩ·cm (*) Measuring range Kcell=0.1 5.0199.9 Ω·cm 0.1 Ω·cm	tion 5/cm /cm /cm				
Measuring range -1999.9+1999.9 mV Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the or ±1 digit Drift after 1 year 0.5 mV/year Measurement of conductivity Resolution Measuring range Kcell=0.01 0.00001.999 µS/cm 0.001 µS/cm Measuring range Kcell=0.1 0.00199.9 µS/cm 0.1 µS/cm Measuring range Kcell=1 0.0199.9 mS/cm 0.01 mS/cm 2.00199.9 mS/cm 0.1 mS/cm Measuring range Kcell=10 2001999 mS/cm 1 mS/cm/cm Accuracy (conductivity) ±0.5%±1digit Measuring range Kcell=0.01 till 100MΩ·cm (*) Measuring range Kcell=0.1 till 100MΩ·cm (*) Measuring range Kcell=0.1 5.0199.9 Ω·cm 0.1 Ω·cm	tion 5/cm /cm /cm				
Resolution 0.1 mV Accuracy ±1 mV or ±0.2% of the reading (the of ±1 digit Drift after 1 year 0.5 mV/year Measurement of conductivity Resolution Measuring range Kcell=0.01 0.00001.999 μS/cm 0.001 μS Measuring range Kcell=0.1 0.0019.99 μS/cm 0.1 μS/cm 2001999 μS/cm 0.1 μS/cm 0.01 mS/cm 200199.9 mS/cm 0.1 mS/cm 0.1 mS/cm Measuring range Kcell=10 2001999 mS/cm 1 mS/cm Accuracy (conductivity) ±0.5%±1digit Measuring range Kcell=0.01 till 1GΩ·cm (*) Measuring range Kcell=0.1 till 100MΩ·cm (*) Measuring range Kcell=1 5.0199.9 Ω·cm 0.1 Ω·cm	tion 5/cm /cm /cm				
Accuracy $ \begin{array}{c} \pm 1 \text{ mV or } \pm 0.2\% \text{ of the reading (the or } \pm 1 \text{ digit} \\ \hline \text{Drift after 1 year} & 0.5 \text{ mV/year} \\ \hline \textbf{Measurement of conductivity} & \textbf{Resolution Measuring range Kcell=0.01} & 0.00001999 \ \mu\text{S/cm} & 0.001 \ \mu\text{S/cm} \\ \hline \textbf{Measuring range Kcell=0.1} & 0.0019.99 \ \mu\text{S/cm} & 0.01 \ \mu\text{S/cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.0199.9 \ \mu\text{S/cm} & 0.1 \ \mu\text{S/cm} \\ \hline \textbf{2001999 } \ \mu\text{S/cm} & 0.01 \ m\text{S/cm} \\ \hline \textbf{2001999 } \ m\text{S/cm} & 0.01 \ m\text{S/cm} \\ \hline \textbf{2001999 } \ m\text{S/cm} & 0.1 \ m\text{S/cm} \\ \hline \textbf{Accuracy (conductivity)} & \pm 0.5\% \pm 1 \ \text{digit} \\ \hline \textbf{Measuring range Kcell=0.01} & \text{till } 100\text{M}\Omega\text{-cm (*)} \\ \hline \textbf{Measuring range Kcell=0.1} & \text{till } 100\text{M}\Omega\text{-cm (*)} \\ \hline \textbf{Measuring range Kcell=0.1} & \text{5.0199.9 } \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 5.0199.9 \ \Omega\text{-cm} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega\text{-cm} \\ \hline \textbf{Measuring range Kcell=1} & 0.1 \ \Omega-$	tion 5/cm /cm /cm				
#1 digit Drift after 1 year Measurement of conductivity Resolute	tion 5/cm /cm /cm				
Measurement of conductivity Resolution Measuring range Kcell=0.01 0.00001.999 μS/cm 0.001 μS/cm Measuring range Kcell=0.1 0.0019.99 μS/cm 0.1 μS/cm Measuring range Kcell=1 0.0199.9 μS/cm 0.1 μS/cm 2.0019.99 mS/cm 0.01 mS/cm 2.00199.9 mS/cm 0.1 mS/cm Measuring range Kcell=10 2001999 mS/cm 1 mS/cm Accuracy (conductivity) ±0.5%±1digit Measurement of resistivity till 1GΩ·cm (*) Measuring range Kcell=0.01 till 100MΩ·cm (*) Measuring range Kcell=0.1 5.0199.9 Ω·cm 0.1 Ω·	5/cm /cm /cm				
Measuring range Kcell=0.01 0.00001.999 μS/cm 0.001 μS Measuring range Kcell=0.1 0.0019.99 μS/cm 0.01 μS Measuring range Kcell=1 0.0199.9 μS/cm 0.1 μS/cm 2001999 μS/cm 1 μS/cm 0.01 mS 200199.9 mS/cm 0.1 mS/cm Measuring range Kcell=10 2001999 mS/cm 1 mS/cm Accuracy (conductivity) ±0.5%±1digit Measuring range Kcell=0.01 till 1GΩ·cm (*) Measuring range Kcell=0.1 till 100MΩ·cm (*) Measuring range Kcell=1 5.0199.9 Ω·cm 0.1 Ω·	5/cm /cm /cm				
Measuring range Kcell=0.1 $0.0019.99 \mu \text{S/cm}$ $0.01 \mu \text{S}$ Measuring range Kcell=1 $0.0199.9 \mu \text{S/cm}$ $0.1 \mu \text{S}$ $2001999 \mu \text{S/cm}$ $0.01 m \text{S}$ $2.0019.99 m \text{S/cm}$ $0.01 m \text{S}$ $20.0199.9 m \text{S/cm}$ $0.1 m \text{S}$ Measuring range Kcell=10 $2001999 m \text{S/cm}$ $1 m \text{S/cm}$ Accuracy (conductivity) $\pm 0.5\% \pm 1 digit$ Measurement of resistivity Measuring range Kcell=0.01 till $100M \Omega \cdot \text{cm}$ (*) Measuring range Kcell=0.1 till $100M \Omega \cdot \text{cm}$ (*) Measuring range Kcell=1 $5.0199.9 \Omega \cdot \text{cm}$ $0.1 \Omega \cdot \text{C}$	/cm /cm cm				
Measuring range Kcell=1 $0.0199.9 \mu\text{S/cm}$ $0.1 \mu\text{S/cm}$ $2001999 \mu\text{S/cm}$ $1 \mu\text{S/cm}$ $0.01 m\text{S}$ $2.0019.99 m\text{S/cm}$ $0.1 m\text{S}$ $20.0199.9 m\text{S/cm}$ $0.1 m\text{S}$ Measuring range Kcell=10 $2001999 m\text{S/cm}$ $1 m\text{S/cm}$ Accuracy (conductivity) $\pm 0.5\% \pm 1 digit$ Measurement of resistivity Measuring range Kcell=0.01 till $100M\Omega \cdot \text{cm}$ (*) Measuring range Kcell=0.1 till $100M\Omega \cdot \text{cm}$ (*) Measuring range Kcell=1 $5.0199.9 \Omega \cdot \text{cm}$ $0.1 \Omega \cdot \text{cm}$	cm				
$ 2001999 \ \mu \text{S/cm} \qquad 1 \ \mu \text{S/c} $ $ 2.0019.99 \ \text{mS/cm} \qquad 0.01 \ \text{mS} $ $ 20.0199.9 \ \text{mS/cm} \qquad 0.1 \ \text{mS} $ $ 20.0199.9 \ \text{mS/cm} \qquad 0.1 \ \text{mS} $ $ 1 \ \text{mS/c} $ $ 4 \ \text{Couracy (conductivity)} \qquad \pm 0.5\% \pm 1 \ \text{digit} $ $ 4 \ \text{Measurement of resistivity} $ $ 6 \ \text{Measuring range Kcell=0.01} \qquad \text{till } 1 \ \text{G}\Omega \cdot \text{cm} \ (*) $ $ 6 \ \text{Measuring range Kcell=0.1} \qquad \text{till } 100 \ \text{M}\Omega \cdot \text{cm} \ (*) $ $ 6 \ \text{Measuring range Kcell=0.1} \qquad 1 \ \text{Measuring range Kcell=0.1} $ $ 6 \ \text{Measuring range Kcell=0.1} \qquad 1 \ \text{Measuring range Kcell=0.1} $ $ 6 \ \text{Measuring range Kcell=0.1} \qquad 1 \ \text{Measuring range Kcell=0.1} $	m				
2.0019.99 mS/cm 0.01 mS 20.0199.9 mS/cm 0.1 mS Measuring range Kcell=10 2001999 mS/cm 1 mS/ Accuracy (conductivity) ±0.5%±1digit Measurement of resistivity Measuring range Kcell=0.01 till 1GΩ·cm (*) Measuring range Kcell=0.1 till 100MΩ·cm (*) Measuring range Kcell=1 5.0199.9 Ω·cm 0.1 Ω·					
Measuring range Kcell=10 2001999 mS/cm 1 mS/ Accuracy (conductivity) $\pm 0.5\% \pm 1$ digit Measurement of resistivity Measuring range Kcell=0.01 till $1G\Omega \cdot \text{cm}$ (*) Measuring range Kcell=0.1 till $100M\Omega \cdot \text{cm}$ (*) Measuring range Kcell=1 $5.0199.9 \Omega \cdot \text{cm}$ $0.1 \Omega \cdot \text{cm}$	/cm				
Accuracy (conductivity) $\pm 0.5\% \pm 1 \text{digit}$ Measurement of resistivity Measuring range Kcell=0.01 till $100\text{M}\Omega\text{-cm}$ (*) Measuring range Kcell=0.1 till $100\text{M}\Omega\text{-cm}$ (*) Measuring range Kcell=1 5.0199.9 $\Omega\text{-cm}$ 0.1 $\Omega\text{-cm}$	/cm				
Measurement of resistivity Measuring range Kcell=0.01 till 1GΩ·cm (*) Measuring range Kcell=0.1 till 100MΩ·cm (*) Measuring range Kcell=1 5.0199.9 Ω·cm 0.1 Ω·	cm				
Measuring range Kcell=0.01till 1GΩ·cm (*)Measuring range Kcell=0.1till 100MΩ·cm (*)Measuring range Kcell=1 $5.0199.9 \Omega$ ·cm 0.1Ω ·					
Measuring range Kcell=0.1till 100M Ω ·cm (*)Measuring range Kcell=15.0199.9 Ω ·cm0.1 Ω ·					
Measuring range Kcell=1 5.0199.9 Ω ·cm 0.1 Ω ·					
200 000 0 cm 1 0					
200999 Ω·cm 1 Ω·c	m				
1.00 k…19.99 kΩ·cm 0.01 kΩ	l·cm				
20.0 k…99.9 kΩ·cm 0.1 kΩ	cm				
100 k…999 kΩ·cm 1 kΩ·					
110 MΩ·cm 1 MΩ·					
Measuring range Kcell=10 0.55.0 Ω -cm 0.1 Ω -					
Accuracy (resistivity) $\pm 0.5\% \pm 1$ digit					
Measurement of total dissolved solids (with coefficient %/TDS=	·0 5				
Measuring range Kcell=0.01 0.00019.999 mg/l 0.005 r					
Measuring range Kcell=1 0.0199.9 mg/l 0.5 m					
2001999 mg/l 1 mg					
2.0019.99 g/l 0.01 g 20.099.9 g/l 0.1 g					
Measuring range Kcell=10 100999 g/l 1 g/					
Accuracy ±0.5% ±1digit (total dissolved solids)					
Measurement of salinity					
Measurement range 0.0001.999 g/l 1 mg					
2.0019.99 g/l 10 m	/				
20.0199.9 g/l 0.1 g					

Accuracy (salinity)	±0.5%±1digit				
Measurement of temperature by instrument					
Pt100 measuring range	-50+200 °C				
Pt1000 measuring range	-50+200 °C				
Resolution	0.1℃				
Accuracy	±0.25 °C				
Drift after 1 year	0.1°C/year				
Temperature compensation automatic/manual	0100 °C with $\alpha_{\rm T}$ selectable from 0.00 to 4.00%/ °C				
Reference temperature	20 °C or 25 °C				
χ / TDS conversion factor	0.40.8				
Preset cell constant values: (cm ⁻¹)	K=0.01 K=0.1- K=0.7 - K=1 - K=10				
Standard solutions automatically detected @25°C	147 μS/cm 1413 μS/cm 12880 μS/cm 111800 μS/cm				
Power Supply					
Batteries	4 1.5V type AA batteries				
Autonomy	200 hours with 1800 mAh alkaline batteries				
Power absorbed with instrument off	20 μΑ				
Mains (SWD10)	Output mains adapter 12 Vdc / 1A				
Security of memorized data	Unlimited, independent of battery charge conditions				
Measured values storage - model HD2156.2					
Туре	2000 pages containing 10 samples eac				
Quantity	20.000 sets of measures composed of [pH or mV] [X or Ω or TDS or NaCl], [°C or °F] depending on configuration				
Selectable storage interval	1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 ora				
Serial interface RS232C					
Type	RS232C electrically isolated				
Baud rate	can be set from 1200 to 38400 baud				
Data bit	8 Nava a				
Parity Stop bit	None 1				
Flow Control	1 Van Waff				
TIOW COILLOI	Yon/Yoff				
Serial cable lenght	Xon/Xoff Max 15m				
Serial cable lenght Print interval	Xon/Xoff Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour				
<u> </u>	Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour				
Print interval	Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour				
Print interval USB interface - model HD2156.2	Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour				
Print interval USB interface - model HD2156.2 Type	Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour				
Print interval USB interface - model HD2156.2 Type Connections	Max 15m immediate or selectable between::				
Print interval USB interface - model HD2156.2 Type Connections pH/mV input	Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour 2 1.1 - 2.0 electrically isolated Female BNC connector 8-pole male DIN45326 connector				
Print interval USB interface - model HD2156.2 Type Connections pH/mV input Conductivity input	Max 15m immediate or selectable between:: 1, 5, 10, 15, 30 s 1, 2, 5, 10, 15, 20, 30 min 1 hour 2 1.1 - 2.0 electrically isolated Female BNC connector				

Time			
Date and time	schedule in real time		
Accuracy	1 min/month max deviation		
Operating conditions			
Working temperature	-5 50°C		
Storage temperature	-25 65°C		
Working relative humidity	090% RH without condensation		
Protection degree	IP66		
Instrument			
Dimensions (Length x Width x Height)	185 x 90 x 40 mm		
Weight	470 g (complete with batteries)		
Material	ABS, rubber		
Display	2x4½ digits plus symbols Visible area: 52x42 mm		

(*) The resistivity measurement is obtained from the reciprocal of conductivity measurement. Close to the bottom of the scale, the indication of resistivity appears like reported in the table below:

K cell = 0.01 cm ⁻¹		K cell = 0.1 cm ⁻¹	
Conductivity (µS/cm)	Resistivity (MΩ·cm)	Conductivity (µS/cm)	Resistivity (MΩ·cm)
0.001 μS/cm	1000 MΩ·cm	0.01 μS/cm	100 MΩ·cm
0.002 μS/cm 500 MΩ·cm		0.02 μS/cm	50 MΩ·cm
0.003 μS/cm	333 MΩ·cm	0.03 μS/cm	33 MΩ·cm
0.004 μS/cm	250 MΩ·cm	0.04 μS/cm	25 MΩ·cm

- A In the HD2156.2 models of portable data logger, a new serial port miniUSB type HID (Human Interface Device) has been implemented. When making the connection to the PC by the USB cable Type A Mini USB B-type coded CP23, no USB driver installation is requested.
- **B** For the connection of the models **HD2156.1** to the RS232 port of your PC, the C.206 USB/serial converter is available. The converter is equipped with its own drivers that have to be installed before connecting the converter to the PC.
- C The port with the MiniDIN connector which is present on every model is an RS232C type. By means of the cable coded HD2110CSNM, an RS232 port of a PC or the HD40.1. printer can be connected.

CONDUCTIVITY PROBES				
ORDER CODE	MEASUREMENT RANGE	DIMENSIONS		
SP06T	K=0.7 5 µS/cm…100 mS/cm 0…90 °C 4-electrode cell in PBT/Platinum General use No heavy tasks Max pressure 5 bar	156 16, 50 D=5 Ø 12		
SPT01G	K=0.1 0.1 μS/cm500 μS/cm 080 °C 2-electrode cell in Glass/Platinum Pure water Max pressure 5 bar	35 120 D=5.5		
SPT1G	K=1 10 µS/cm10 mS/cm 080 °C 2-electrode cell in Glass/Platinum General heavy tasks, average conductivity Max pressure 5 bar	35 130 D=5.5		
SPT10G	K=10 500 μS/cm200 mS/cm 080 °C 2-electrode cell in Glass/Platinum General heavy tasks, high conductivity Max pressure 5 bar	D=5.5		
PH ELECTRODES				
KP30	014 pH / 080 °C / 2 bar Body in Epoxy - GEL filled 1 ceramic diaphragm Cable L=1 m with BNC Waste water, drinking water, water emulsions, galvanic baths, paints, varnishes, water suspensions, fruit juices, titration.	Ø 16 130 Ø 12 Ø 12		

ORDERING CODES

HD2156.1: The kit is composed by the instrument HD2156.1, 4 1.5V alkaline batteries, operating manual, case and DeltaLog9 software downloadable from Delta OHM website.

HD2156.2: The kit is is composed by the instrument HD2156.2 **data logger**, 4 1.5V alkaline batteries, USB cable CP23, operating manual, case and DeltaLog9 software downloadable from Delta OHM website.

pH/mV electrodes, conductivity probes, temperature probes, standard reference solutions, connection cables have to be ordered separately.

Accessories

HD2110CSNM: 8-pole connection cable MiniDin - Sub D 9-pole female for RS232C.

C.206: Cable for instruments of the series HD21...1 for direct connection to the USB input of a PC.

SWD10: Stabilized power supply at 100-240Vac/12Vdc-1A mains voltage.

HD40.1: The kit includes: 24-columm portable thermal printer, serial interface RS232, 57mm paper width, four NiMh 1.2V rechargeable batteries, SWD10 power supply, instruction manual, 5 thermal paper rolls. It uses the optional cable HD2110 CSNM.

HD8600C: ACCREDIA ISO 17025 certified buffer solutions kit: pH 4.01+ pH 7.00 + pH 10.01. Two 50 ml bottles for each type (6 bottles in total).

HD8700C: ACCREDIA ISO 17025 certified standard solutions kit: 0.001mol/l (147 μ S/cm @ 25 °C) + 0.01mol/l (1413 μ S/cm @ 25 °C) + 0.1mol/l (12880 μ S/cm @ 25 °C).

Two 50 ml bottles for each type (6 bottles in total).

HD22.2: Laboratory electrode holder composed of base plate with builtin magnetic stirrer, shaft and replaceable electrode hold-er. Suitable diameter 12mm. It holds up to 5 electrodes at the same time. Powered by power supplier SWD10 (**optional**).

HD22.3: Laboratory electrode holder composed of base plate. Flexible arm for free positioning. Suitable for electrodes with diameter 12mm. It holds up to 5 electrodes at the same time.

pH Electrodes

KP30: Gel pH combined electrode for general use, 1m cable with BNC, EPOXY body .

CP: 1.5m extension cable with BNC/S7 connector for electrode without cable, thread S7.

BNC: female BNC for extension cable

Conductivity Probes

SP06T: Conductivity and temperature combined probe. Cell constant 0.7.

SPT01G: Conductivity and temperature combined probe, glass body, 2 platinum wire electrodes, cell constant 0.1.

SPT1G: Conductivity and temperature combined probe, glass body, 2 platinum wire electrodes, cell constant 1.

SPT10G: Conductivity and temperature combined probe, glass body, 2 platinum wire electrodes, cell constant 10.

Temperature probes of the series TP87 and TP47... are suitable.